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ABSTRACT

The non—linear anisotropic mechanical behavior of an aluminum alloy metal matrix
composite reinforced with continuous alumina fibers has been determined experimentally.
The mechanical behavior of the composite have been modeled by assuming that the
composite has a periodical microstructure. The resulting unit cell problem has been solved
with the finite element method. Excellent agreement was found between theoretically
predicted and measured stress—strain responses for various tensile and shear loadings. The
stress—strain responses for transverse and inplane shear were found to be identical and this
will provide a simplification of the constitutive equations for the composite. The composite
has a very low ductility in transverse tension and a limited ductility in transverse shear that
has been correlated to high hydrostatic stresses that develop in the matrix. The shape of the
initial yield surface has been calculated and good agreement was found between the

calculated shape and the experimentally determined shape.



INTRODUCTION

Metal matrix composites are attractive because of high strength and stiffness to
specific weight ratio and thermal stability. For example, they are considered in the
automotive industry for replacing steel and aluminum in reciprocating and rotating engine
components to reduce inertia forces, minimize vibrations, and increase allowable speed
ranges. In suspension components to reduce the unsprung mass to improve handling.
Metalmatrix composites have excellent properties when loaded in the fiber—direction but
they will inevitably be subjected to transverse and shear loads when they are used in
complex components, even if a substantial effort is made in the design to minimize these
loadings. Transverse and shear loads are carried by the matrix and can set severe limitations
on the load carrying capacity of composites. Successful use of these materials in complex
components requires a rigorous understanding of the multiaxial behavior that is not limited
to in—plane properties of panels. At the present time the composites are available in limited
quantities and shapes and this limits the range of mechanical tests that can be performed to
characterize the mechanical behavior and the experimental data that can be determined.
This shortage of information can be overcome by developing models that can use the data
from a limited number of tests to simulate the mechanical behavior of composites for more
general loadings. The models can also be used to study the behavior of fictitious composites
of different matrix and fiber combinations and the performance of the composite can be
optimized for a specific application. They also provide the local stress and strain
distribution in the composite for macroscopic loadings and global failure criteria can be

derived for the composite based on failure criteria of the constituents.

The non—linear stress strain responses of an aluminum alloy metal matrix composite
reinforced with continuous alumina fibers in a unidirectional lay—up have been determined
experimentally for longitudinal and transverse tension and in—plane and transverse shear.

All the strain components were measured to determine the multiaxial behavior of the



composite. The non—linear deformation characteristics have been compared with
numerically calculated responses for a model based on the assumption that the
microstructure of the composite is periodic and the fibers are arranged in an hexagonal
array. The shape of the initial yield surface has been calculated from the model and was
compared with experimental data for various loadings. Compared to the matrix the
composite has a low ductility for some of the matrix dominated failure modes. The local
stress distributions in the composite have been calculated and the low ductility has been

attributed to high hydrostatic stresses in the matrix.

EXPERIMENTS

Composite Material

The composite is Du Pont's FP/Al [Campion et al., 1978] with continuous fibers in a
unidirectional lay—up. The fiber volume fraction was determined to be 55 % . The FP fiber
consists of 99 % pure crystalline oc—alumina (A1203) coated with silica that improves the
strength of the fiber and aids the wetting by the molten metal. The fibers have a diameter of
approximately 20 pm, a modulus of 345 to 380 GPa, a tensile strength of 1.9 to 2.1 GPa
for 6.4 mm gauge length, and a fracture strain of 0.3—0.4%. The matrix material is a 2 wt%
Li—Al binary alloy. The lithium promotes the wetting of the alumina fibers that forms a
strong matrix—fiber interface and it also raises the modulus and decreases the density of the
matrix. The composite is fabricated by preparing the FP fibers into tapes by using a fugitive
binder and the tapes are subsequently laid up in a metal mold in the desired orientation. The
binder is burned away and the mold is vacuum—infiltrated with the molten matrix. The

composite was available in the form of a plate 150 x 150 x 12.5 mm thick.

Specimens and Test Procedures
The specimen type used for longitudinal and transverse tests, Fig. 1., has a relatively

large radius at the transition from the gripping section to the reduced gauge section to



provide a low stress concentration and a short gauge length to prevent specimen buckling

during compressive loading. The strains were measured with 3.2 mm strain gauges.

Shear properties were determined with specimens of Iosipescu—type, Fig 2, because
the composite was available in the form of a plate. The specimen is a notched short beam in
anti—symmetric loading with the symmetry line in the mid—span subjected to shear load and
no bending moment. The notches provide a constant shear stress distribution along the
symmetry line when the notch angle is selected appropriately [Wang and Dasgupta, 1986],
102.6° for an isotropic material. However, the shear stress is singular at the notch tip if the
notch is too sharp and it has a parabolic distribution along the symmetry line if the notch is
too blunt. In practice, the notch angle is selected to be slightly larger than the critical, in
order to be conservative and avoid high stress concentrations. The extent of the zone with
constant shear strain in the longitudinal direction of the specimen decreases when the
composite yields and short strain gauges are required to get an accurate measurement of the
shear strain during the plastic deformation. The shear strain was measured with two 1.62
mm long strain gauges mounted on opposite sides of the specimen in the gauge section: one
in + 45° and one in the —45° direction. The reported shear stress has been calculated as the
load divided by the cross sectional area of the gauge section. In—plane properties have been
obtained for two fiber orientations: fibers orientated in the direction of the notches (o = ®/2,

B = 0 in Fig. 2) and fibers orientated perpendicular to the notches (o = /2, B = mn/2).

A simply supported cylindrical plate subjected to a pressure load on one side, Fig. 3,
was used to measure initial yield and limit strength for transverse bi—axial loading. The
strain was measured with a 1.62 mm long strain gauge mounted in the center of the pressure
free surfaces of the plate. Elementary plate theory proved to be sufficiently accurate to

calculate the stresses at the surfaces at initial yield for the present dimensions of the plate.



The initial yield surface was determined in a series of separate tests. The size of the
initial yield surface is dependent on the definition of initial yield and the shape can be also
strongly dependent on the definition of initial yield. Initial yield was defined as the point at
which the stress strain curve has an offset strain of 10_5 to the initial linear part. This was
the lowest limit that could be detected with good accuracy and repeatability for the test
system. The loading was reversed at this point and the point on the opposite side of the
yield surface was thereafter measured. The reported values represents the average value of

five subsequent measurements on the same specimen.

All the specimens and fixtures were loaded in a servo—hydraulic test machine
operated in displacement control. The loading rates used correspond to strain rates of the

order 5 10_5 1/s. The specimens were machined to final dimensions by using diamond

grinding.

MECHANICAL PROPERTIES
The measured moduli and Poisson's ratios are summarized in table 1. The notation is
such that the fibers are orientated in the 3—direction and the transverse plane is the 1-2
plane. The Poisson's ratios have been determined form the tensile tests and the shear moduli
from the shear tests. Five elastic constants are sufficient to describe the linear elastic

response for a transversley isotropic material and they are interrelated through the relations

Ey3 g, 127 2(T+vyy)

The longitudinal stress strain curve , Fig. 4, is linear up to approximately 250 MPa ,
thereafter the matrix yields and the tangent stiffness decreases. A variation in the initial

yield stress was observed between specimens indicating that the residual stress state in the



matrix is affected by the handling of the material. The onset of yielding is accompanied
with an increase in the transverse contraction, Fig. 5, that is caused by an increase in matrix
contraction when the matrix yields. The fracture strain is of the same order as the reported
fiber fracture strain, 0.3—0.4 % [Champion et. al., 1978] indicating that the final fracture is

dominated by the fiber strength.

The transverse stress strain curve, Fig. 6, has a deviation from linearity at 75 MPa.
The ultimate strength is 200 MPa and the strain to fracture is 0.8 %. The ultimate strength
is of the same magnitude as the matrix strength while the fracture strain of 0.8 % is
substantially lower than the matrix fracture strain of 30 % [Sakui and Tamura, 1969]. The
strain rate in the fiber direction , Fig. 7, decreases when the matrix yields and tends to zero
for most of the tests. However some tests showed a final negative strain rate in the fiber
direction. The magnitude of strain rate in the unloaded transverse direction, Fig. 8, increases
when the matrix yields and the final slope is close to minus one indicating that the
deformation tends to plane strain in the fiber direction. The increase in transverse
contraction is caused by a continuous decrease in matrix tangent stiffness in the plastic
deformation regime. During the plastic deformation the length change of the elastic fibers
decreases and from the constant volume condition of the matrix deformation the ratio of
é11/é22 -+ —1 . The negative strain rate in the fiber direction at the end of some tests
indicate that the matrix cannot always sustain the elastic shortening of the fibers and this

may be caused by matrix damage that develops close to the transverse fracture.

Shear stress strain curves for strains up to 2% are shown in Fig. 9 for different
loading directions. Inplane shear (o = =/2 in Fig. 2) has been measured for two fiber
orientations: fibers in the directions of the notches (B = 0) and in the longitudinal direction
of the specimen (f = n/2). No sy§tcmatic difference could be found between the stress

strain curves for the two orientations. A deviation is not expected and this confirms that the



test method is appropriate for the present composite. Transverse shear corresponds to o =0
. The fibers are then orientated in the thickness direction of the specimen, and o = n/4
corresponds to shear loading with equal transverse and inplane shear stress components. The
shear stress strain curves for all the different loading are approximately equal. The
difference is well within the variation of composite properties. This implies that an
enormous simplification can be made in the formulation of constitutive equations for the
composite: the transverse and inplane shear responses can be assumed to be equal and the
interaction for combinations of the two loadings is quadratic. The failure strain is dependent
on the direction of the shear loading. For inplane shear the strain to fracture was estimated
from the ram displacement to be 20 % . This is the same order of ductility as for the
matrix. For shear loadings with a component of transverse shear (a#0) the strain to fracture

is approximately 5 % .

The transverse biaxial tensile strength was estimate to be 370 MPa from the plate
bending experiment Fig. 15 . The stress was calculated by using the perfectly plastic

solution for a pressure loaded cylindrical plate following the v. Mises yield condition.

NUMERICAL MODEL OF COMPOSITE MATERIAL

The mechanical behavior of the composite has been calculated by use of the method
of homogenization [Larsen, 1976, Len'e, 1986, and Jansson, 1990]. The method is based on
the assumption that the composite has a periodic microstructure and that the wavelength of
the global loading of the composite is much longer than the wavelength of the variation of
the microstructure. In mechanical testing a relatively large material volume is subjected to a
constant average field and the requirement of large difference in the two wavelengths is
fulfilled everywhere except at the traction free surfaces. However this disturbance reaches
approximately one unit cell into the composite and can be neglected. The great difference in

wavelengths implies that only the two leading order terms of an asymptotic expansion of



the displacement field in the two length scales need to be included and the global boundary
value problem for the composite can be solved with an effective constitutive equation

derived from a unit cell problem. Hence, the displacement field can be written as

_ 0 \%
where e?j is the global average strain field in the composite that gives rise to a linear

displacement field over the unit cell and
u}’(x) = u}'(xk+dk) 2)

is a component of the displacement field that is periodic on the unit cell and is equal on
opposite sides of the boundary of the unit cell of size dk . The unit cell is the smallest
repeating element in the composite and it is sufficient to define the spatial distribution of
the constituents on the unit cell to define the distribution in the composite. The stresses in

the unit cell are given by the constitutive equation for the constituents as

O'i-

i = Cijkl(e’x)ekl 3)

where Cijkl(e,x) is a function of position, given by the distribution of the constituents, and
can be a nonlinear function of invariants of € . The stress distribution in the unit cell must

satisfy local equilibrium

Sii.j 4)

on the unit cell. The equilibrium (4) equation together with the requirement of periodicity

on the boundary on the unit cell of the unknown periodic displacement field u}'(x) defines

8



a well posed problem on the unit cell when u}'(x) is fixed at some location. The average
strain e?j is given as input and the periodical component of the displacement field and the
local stress distribution in the unit cell are solved for. The average stress in the unit cell can

than be calculated from the local stress distribution as

1
o> =3 \{Gij(x) dv &)

In this way effective stress strain curves can be generated for the composite for different
loadings and in addition the stress distribution Gji(x) gives local stress concentration

factors.

The present composite consists of long fibers in a unidirectional lay up that are
randomly distributed in the transverse plane. In the model to be analyzed the fibers are
assumed to be long parallel cylinders arranged in a hexagonal array, Fig 10. This is the
periodical array which has the mechanical properties with the closest symmetries to the
properties of the composite with randomly distributed fibers. Both systems are transversely
isotropic when the constituents are linear elastic but the hexagonal array has a weak
deviation from transverse isotropy when the matrix exhibits a nonlinear stress strain relation
[Jansson, 1990]. The deviation is most pronounce for a perfectly plastic matrix where some
loadings permit slip on planes in the periodical arrays that are unconstrained by the fibers.
This could not occur in a large volume element of a composite with randomly distributed
fibers because it is not possible to find a straight line in the transverse plane that do not cut
through fibers, cf. Underwood [1970]. Reasonable results can be expected if effective
properties are calculated for loadings that do not permit slip on planes that are
unconstrained by the fibers. The hexagonal array then resembles closely to a composite

with randomly distributed fibers. For the present fiber volume fraction the shear loading



T3 permits slip on unconstrained planes and that response cannot be expected to be

representative for a transversely isotropic composite.

In the analysis the fibers are assumed to be linear elastic and the matrix behavior is

modeled with a small strain 12 deformation theory for a power law material. The total

strain 8ij is given as the sum of an elastic and a plastic part

=% +€P
eij = eij + eij

where the elastic part is given as

e _l+v v
£ ="E — %~ E ki

and the plastic part is defined as

p_31 1
& = 2B~ B

(6)

(7

8

where E is Young's modulus, v the poisson's ratio, and sij the stress deviator. The

secant modulus is given as ES =0 e/ee and has the same slope as the uniaxial stress strain

curve. Here is S, the v. Mises equivalent stress and € o is the associated equivalent strain.

The stress strain relation reduces to

[¢)
€ E 0<CO
- 0.0 g \n
= >
g (g?) °29,

o

in uniaxial tension, where © o is the initial yield stress in uniaxial tension.

10

®



The governing boundary value problem for the effective properties on the unit cell is
two dimensional and because of the non—linearity and the complex geometry it has been
solved with the help of the Finite Element Method. The displacement field is interpolated
with nine nodes isoparametric elements and reduced integration is used to avoid locking, 2
x 2 for the hydrostatic component and 3 x 3 for the deviatoric component of the stress
tensor. The nonlinear system of equations is solved with a Newton Raphson scheme. All the
considered loading of the unit cell, Fig. 10, are symmetric or anti—symmetric with respect
to the Y1 and Yy axis. The displacement field has an inversion symmetry at the point
({3/2b, b/2) when the displacements are taken to be zero at the point. This implies that only
an eight of the indicated unit cell in Fig. 10 needs to be analyzed, Fig. 11. The finite
element mesh in Fig. 11 was determined to be sufficiently fine to give convergent solutions
for non—linear matrix behavior. A detailed description of the implementation of the method
and derivations of the boundary conditions for different loadings are given in Jansson

[1990].

CALCULATED EFFECTIVE STRESS STRAIN RELATIONS

The effective elastic constants of the composite have been calculated by using
elastic constants from the literature for the constituents; fiber [Champion et. al., 1978 and
Richerson, 1982] and matrix [Dudzinski, 1952 and Noble et al., 1982]. The calculated
elastic constants are compared with the experimentally determined elastic constants in
Table 1. The maximum difference between experimental and calculated values is less than
10% and this is well within the limit of how precise this type of calculations can be
expected to be because of the uncertainty in the value of the elastic constants of the
constituents. Other methods exist that could be used to calculate the individual elastic
constants with a reasonable accuracy. However, the value of elastic constants calculated by
combining results for different models can be very inaccurate [Jansson 1990]. The present

method has the advantage of providing a consistent way to calculate all the elastic
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constants.

The elastic properties of fiber and matrix are not greatly affected by the history of
processing and heat treatment of the composite and hence it is possible to use data from the
literature. However, the flow properties of the Al-Li matrix alloy are strongly dependent on
heat treatment and cold—working [Stark et al., 1981 and Sakui and Tamura, 1969]. Details
of the processing of the composite and of any heat treatments are not available. Hence, the
exact state of the matrix is not known and the information is insufficient for finding the
flow properties of the matrix from the literature. This leaves as the only means of
estimating the flow properties of the matrix in the composite to fit a calculated response, by
varying the flow properties of the matrix, to a matrix dominated stress—strain curve for the
composite. After fitting the calculated response for loading in the 1—direction (Fig. 10) to
the transverse stress strain curve, Fig. 6, the initial yield stress of the matrix was determined

to 94 MPa with a hardening exponent n=35.

The applicability of the method can now be evaluated by examining how well it can
predict non—linear effective stress strain response for loadings other than transverse tension

and the ratio between the different strain components.

The calculated contraction in the fiber direction for transverse tension, Fig. 7, shows
the same trend as the measured and tends asymptotically to plane strain in the fiber
direction. The contraction in the other transverse direction shows also the same
characteristics as the experiment and tends asymptotically to a slope of minus one. No
damage is included in the constitutive equations describing the matrix behavior and the
contraction in Fig. 7 indicating softening in the matrix close to fracture cannot be modeled

with the present constitutive equation.
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The calculated response for longitudinal tension is compared with measured in Fig.
4. The overall agreement is good. However the calculation predicts that the initial
non—linearity of the stress—strain curve occurs at stress higher than the experiments show. It
was found from the measurements of the initial yield surface that the composite has a
residual stress state such that the initial yield stress is lower in tension than in compression
for longitudinal loading. The effect of residual stress from the fabrication of the composite
has not been included in the calculations but would change the results in the direction
indicated by the experiments. The calculated transverse contraction , Fig. §, is slightly

lower than the measured for large strains.

It was found by Jansson [1990 ] that the calculated shear response for transverse
shear, Ty o orientations are given in Fig. 10, and the inplane shear , 1:13 , are nearly
identical. The inplane shear response , T3 has the same linear elastic response but a
lower limit load. It was stated that the loading T3 is not likely to simulate the behavior of
a composite with randomly distributed fibers in the transverse plane because the loading
admits slip on planes that are unconstrained by the fibers. It was also found that the inplane
and transverse shear moduli are equal within 10% when the fibers are istropic for a wide

range of moduli ratios and volume fractions.

The experiments, Fig. 9, also indicate that the inplane (o = n/2, Fig. 2) and the
transverse (o = 0) shear responses are similar and can be assumed to be identical. A loading
with a equal components of transverse and inplane shear shows also a similar response. The

calculated response agrees well with the measured responses.

INITIAL YIELD SURFACE
In the calculations, initial yielding is defined as when the matrix initially yields. The

different macroscopic stress states causing initial yielding form a surface in the stress space.
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The surface is useful for determining if a cyclic stress state will have elastic shakedown and
may be used as a flow potential for the plastic deformation of the composite. The response
to initial yielding is elastic and the initial yield surface can therefore be determined from
calculations based on linear elastic constituents. It was shown by Jansson [1990] that the
initial yield surface for a hexagonal array does not in general possess transverse isotropi for
transverse loading and inplane shear. For example, the stress concentration of the v. Mises
equivalent stress is higher for transverse tension in the 1-—direction than in the 2—direction.
Two approaches were suggested to overcome this discrepancy between the surfaces for the
hexagonal array and the transversely isotropic material. The unit cells can be assumed to be
randomly orientated with regard to the stress state. The size of the initial yield surface is
then dictated by the unit cell that has the orientation that corresponds to the highest stress
concentration. The surface is calculated for a given stress state by searching through all
possible orientations of the unit cell for the lowest stress that causes initial yielding and a
substantial amount of computations are needed to define the whole initial yield surface. A
more attractive modification is to assume that the principal stresses in the transverse plane
are always orientated in the I and II directions shown in Fig. 10. These directions are
orientated 15° off the symmetry axis in the transverse plane and they are equivalent with
the same stress concentration. The surface based on this definition has all the symmetry
properties of a transversely isotropic material and is less cumbersome to calculate than the
surface based on the highest stress concentration. The two surfaces do not differ greatly in
shape [Jansson, 1990]. The definition that the principal stresses are always orientated in the

I and II-direction is used here.

The calculated initial yield surface is a circle in the Gy3 — 03 plane, Fig. 12, and
has the shape of a rugby ball in the G,; — 0y, plane, Fig.13, with sharp corners at ¢, =
Cyy - Cuts through the surface in the Gyq — Opp —O33 space are shown in Fig. 14. The
surface has the form of a thin slab that is long in the G011 =% and O33 directions and

14



is thin in the direction corresponding to transverse shear 011 =09y

The linear elastic stress distribution in the unit cell is governed by two uncoupled
problems: an antiplane problem gives the two inplane shear stresses ( 03 and 023) and a
plane problem gives the other stress components ( G11 %> 033 and 0‘12). The V. Mises
equivalent stress is quadratic in the stress components and can be written in terms of the

macroscopic stresses for a given location in the matrix as
O = 11(011:0)2033,01) + +5(013.053) (10)

where f 1 is given by the solution to the plane problem and f2 is given by the solution to
the antiplane problem. The initial yield surface is quadratic for this interaction when the
possition for the highest stress concentrations does not varie with loading. The functions f1
and f2 are then given by the surfaces in Figs. 12 and 14 respectively. In general the
location of the highest stress concentration will vary and the assumption of a quadratic

interaction will give a conservative estimate of the initial yield surface.

The experimentally determined points on the initial yield surface have been
normalized with respect to the yield stress of the matrix, 94 MPa, and are also shown in
Fig. 12-14. The data points correspond to key points defining the dimensions of the
surfaces and supports the calculated shape. They are not sufficiently close in the stress
space to give the detailed shape of the corners of the surface. This requires multiaxial tests
in which the ratio between the stress components can be varied. The yield surface must be a
circle in the G13 —Op3 plane because of the symmetry of the material and the inplane shear
experiments gives the radius the circle, Fig.12. The calculated yield surface for transverse
loading is given together with yield surfaces for the matrix subjected to plane stress and

plane strain in Fig. 13. The fibers introduce stress concentrations that gives the composite a
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lower initial yield stress than the yield stress of the matrix for stress states close to uniaxial
tension and shear ((r11 = —022). However, transverse bi—axial tension or compression loads
the fibers in the longitudinal direction and causes hydrostatic stress to build up in the matrix
that more than compensates for the stress concentration induced by the fibers and the
composite has a higher initial yield stress for loadings close to biaxial tension than the
matrix. The biaxial plate bending experiment, Fig. 3 and 15, verifies the result given by the
calculations that the initial yield stress is substantially higher for bi—axial transverse tension
than in shear and transverse tension. It is obvious for longitudinal tension that the fibers
help to carry the loading and the initial yield stress must be higher than the yield stress of
the matrix, Fig. 14. The experiments show that the size of the calculated yield surface and
the measured in this direction are comparable. However, the experiments indicate that the
initial yield stress is lower in tension than in compression. The ceramic fibers have a lower
coefficient of thermal expansion than the metal matrix. During cool down, from the
processing temperature of the composite, the missmatch will load the matrix in residual
tension in the longitudinal direction . This residual stress state will cause the composite to

initially yield for a lower stress in longitudinal tension then for longitudinal compression.

Measurements of the initial yield surface for mixed loading of a B/Al system have
been reported in [Dvorak and Bahei—~El-Din, 1987). The data points are not sufficient close
in stress space to make strong statements about the detailed shape of the surface. However,
it was advocate that the surface should be represented by a bimodal model. It appears as the

model is more appropriate for describing the limit load behavior of the composite.

COMPOSITE FRACTURE

Longitudinal Tension
The strength in the longitudinal direction is dominated by the fiber strength. The

applicability of some simple models to predict the composite strength based on the

16



statistical variation of the fiber strength and the yield stress of the matrix were evaluated by
Nunes [1982]. It was found that two models gave reasonable predictions. In the first model
is it assumed that the composite strength is given by the fiber bundle strength and the flow

stress of the matrix. Thus,
of =conn)+ (1 —c) o, () an
11 = rBYg ) Oym'®t
where Ce is the fiber volume fraction, cym(ef) is the flow stress of the matrix at fracture,

and GFB(I g) is the fiber bundle strength for the gauge length 1g of the specimen. The

relation between fiber bundle strength and average fiber strength is given by [Colman,

1958] as
1
me 1 /1]™
_= g o
Opg = O ——m+ 1 (12)
)

where Ef is the average strength of fibers of length lo . m is the Weibull modulus and T
1s the gamma function. In the second model [Zweben and Rosen, 1970] it is assumed that
global fracture occurs when a fiber adjacent to a previously broken fiber breaks because of
the stress concentration induced by the initially broken fiber. This leads to the tensile

strength

1
c 16 c. v & " 2m
f R ™ -1 + (<)o, (e) (13)
I+ Ym) [ md” 13 y

f _
G11=¢

where v is the loaded volume, k the stress concentration in the fiber next to a broken

fiber, d is the fiber diameter , and & b is the pull out length of the fiber. The average

17



strength of uncoated fibers is reported by Champion et. al [1978] to be Ef = 1480 MPa for
a gauge length 1o = 6.25 mm and the Weibull modulus for the strength of the fibers m =
6.5 [Nunes, 1982]. The maximum pull out length was measured from the fracture surfaces
of the longitudinal specimens and was found to be Sp = 2 d. The stress concentration factor
k is dependent on the arrangement of the fibers. The value for a broken fiber in a square
array , k = 1.15, was used in the analysis and is the same value as used by Nunes [1982].
The matrix yield stress at fracture was estimated to 115 MPa. For this data the parallel
model with the fiber bundle strength predicts 0'{1 = 580 MPa and the model with the local
interaction between fibers predicts ofl = 512 MPa. The measured average strength was
here found to be 585 MPa. The fiber bundle model gives here a better prediction that the
local interaction model. This is the opposite to what was found by Nunes [1982]. It appears
as if the local interaction model is more physically reasonable but its derivation is based on
many simplifying assumptions that remain to be worked out in detail. The simplicity of the

fiber bundle model and its accurate prediction makes it attractive.

Transverse and Shear Fractures

Inspection of the fracture surfaces for transverse tension and shear revealed that
nearly all the the fibers at the fracture surface are covered by a metal matrix layer. This
indicates that the interface between fiber and matrix is strong and that the transverse tensile

and shear strengths are governed by the matrix strength.

The highest normal loading on the fiber matrix interface in transverse tension occurs
for loading in the 2—direction, Fig 10. The initial elastic stress concentration is 1.4 for this
loading, Fig. 16. The stress concentration subsequently decreases after the initial yielding of
the matrix to the value 1.17 and it thereafter starts to increase with continued loading to a

value close to the initial elastic stress concentration.
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The highest stress concentration at the interface for inplane shear occurs for the
shear loading Ty3- The initial elastic value is 1.36, Fig. 16. The shear stress concentration
also decreases after the initial yielding of the matrix but it never builds up to its initial

value with subsequent loading.

It can be deduced that it is conservative to use the initial elastic stress concentration
for estimating the loading on the interface. For the present fiber and matrix the elastic stress
concentration for a single fiber in an infinite body [Goodier, 1933] is 1.33 for transverse
tension and 1.68 for inplane shear. A comparison of these values with the values for the
periodical array, Fig. 16, shows that the interaction between the fibers reduces the loading

on the interface.

The experiments showed that the strain to failure is 0.8% for transverse tension, 5%
for transverse shear, and 20% for inplane shear. The only stress components in inplane
shear are 013 and Oy3 - This implies that no hydrostatic stress is present in the matrix for
this loading. However, transverse tension and transverse shear causes hydrostatic stress in
the matrix. A measure of the constraint on the loading of the matrix is the void growth
factor ckk/ce where O)k is the sum of the principal stresses and ©° is v. Mises
equivalent stress [Rice and Tracy, 1969]. The strain to failure of a ductile material with
small inclusions, that can act as sources for void nucleation, has been found to be strongly
dependent on the void growth factor [Hancock and Mackenzie,1976] and this has been
observed for an Al-Li alloy by Pilling and Rindly [1986]. A stress state corresponding to a
high void growth factor will cause a fast void growth and low strain to failure, caused by
the coalesce of the voids, and conversely a low void growth factor will cause a slower void

growth with a higher strain to failure.

The evolution and spatial distribution of the void growth factor in the matrix is
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depicted in Fig. 17 for transverse tension in the 1—direction and for transverse tension in the
2—direction in Fig. 18. The highest value of the void growth factor is approximately 2.5 at
initial yield for both loading directions. It increases to 5 at 1% strain for loading in the
1—direction and to 7 for loading in the 2—direction. The location of the highest void growth
factor is dependent on the loading direction. It is close to the symmetry axis for G5y
loading and and is orientated off the symmetry axis for 04 loading. The extent of the
zones with a high void growth factor is large for these loadings. The void growth factor at
initial yielding for transverse shear, Fig. 19, is approximately equal to the value for
transverse tension. It does not increase to such a high value as for transverse tension during
the subsequent loading, Furthermore, the extent of the zone with a high void growth factor

is much smaller than for transverse tension.

The low ductility in transverse tension can be correlated to high hydrostatic stresses
that build up in the matrix when it deforms plastically for this loading. Transverse shear has
lower hydrostatic stresses extending over smaller zones than for transverse tension and this
indicates that the composite should have a higher ductility. This is in agreement with
experiments that show a higher ductility for transverse shear than for transverse tension.
The inplane shear does not cause any hydrostatic stress and the ductility should be high as
indicated by the experiments. It can therefore be concluded that the matrix ductility should
not be sensitive to hydrostatic stress for a composite with a strong fiber matrix interface if it

is desirable to have a composite with high ductility in transverse tension.

CONCLUSIONS
It was found that all the elastic constants for a continuous fiber reinforced metal
matrix composite can be calculated accurately from the properties of the constituents by

assuming that the microstructure is periodic.
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The non—linear response of the metal matrix is not known but it was demonstrated
that the matrix properties could be extracted from one test and that the calculated responses

for other loadings agrees well with the experiments.

Good correlation was found between the calculated shape of the initial yield surface
and the experimental measurements. However, the experiments indicate that a residual
stress state exists such that the initial yield stress is lower in transverse tension than in
transverse compression. This indicates a residual longitudinal tensile stress in the matrix and
is consistent with a residual stress state induced during cool down after the consolidation by

the thermal mismatch between fiber and matrix.

The composite has a low ductility in transverse tension that has been related to high
hydrostatic stresses that build up in the matrix for this loading when the matrix deforms

plastically.

The stress strain curves for inplane shear, transverse shear, and combination of these
loadings are for all practical purposes identical for this composite that has a high fiber
volume fraction (55%). The shear responses are also identical for the pure matrix. This
corresponds to the other extreme case of a very low volume fraction. It is very likely that
the responses for intermediate volume fractions are close. This implies that the constitutive
equations describing the non—linear behavior for a composite with a strong fiber matrix

bond will have a less complex form.
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Table 1 Elastic properties.

Ejy E3z G, G353 v V3 V13
GPa GPa GPa GPa
Experiments 150 225 55 58 031 028  0.18
Calculated 148 220 549 573 0336 0281 0189
E,=344.5 GPa (50 Msi) ve =026
E_=689GPa (10 Msi) v_ =032

cf=55%
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